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ESTIMATION I N  MIXED FREQUENCY DISTRIBUTIONS 

SUMMARY 

In the analysis of atmospheric data, distributions which are asymmetrical 
o r  multimodal are often encountered. These distributions are usually composed 
of two o r  more distinct homogeneous subpopulations and are designated as 
"mixed" o r  "compound" frequency distributions. 

The problem of estimating parameters in a mixed distribution is of 
considerably greater complexity than that of estimation in a single unimodal 
distribution. Not only is it necessary to estimate the parameters  of each com­
ponent, but the proportionality factors, which express the proportion o r  per­
centage of each component in the mixture, must  also be estimated. In the case 
of a mixture consisting of K components each having two parameters,  there 
are 3K-1 parameters to be estimated in the resultant distribution. 

Karl Pearson solved such a problem as early as 1894 for  a compound 
normal population, using .the method of moments. The problem was investigated 
later, first by Charlier,  and then in a joint effort by Charlier and Wicksell, 
who greatly simplified the theory. 

The papers presented in this document are concerned with estimation 
in compound distributions and are the results of an investigation performed by 
the Institute of Statistics, University of Georgia, Athens, Georgia, as a part  
of NASA contract NAS 8-11175 with the Ter res t r ia l  Environment Branch, 
Aerospace Environment Division, Aero-Astrodynamics Laboratory, NASA -
George C. Marshall Space Flight Center, Huntsville, Alabama. Dr. A. C .  
Cohen, Jr. , is the principal investigator and the NASA contract monitors are 
Mr. 0. E. Smith and Mr. L. W. Falls. 

The methods and procedures presented are practical and are applicable 
to experiments in which the data exhibit qualities that require a mixed distribu­
tion as the statistical model. 





ESTIMATION IN A MIXTURE OF A POISSON W I T H  A 
NEGATIVE B INOMIAL DISTRIBUTION 

by A. Clifford Cohen, Jr. 

Introduction 

Many of the distributions encountered in the analysis of atmospheric 
data are the resul t  of mixing two o r  more  separate component distributions. 
Such distributions are therefore of particular interest  to aerospace scientists. 
Mixtures of two Poisson distributions, mixtures of two exponential distribu­
tions and mixtures of two normal distributions have been considered in  
previous memoranda [ I,2,3]. This paper is concerned with estimation of 
the parameters  in a distribution consisting of a Poisson component mixed with 
a negative binomial component. 

The Probability Function 

The density function of a mixed distribution with components fl(x) and 
f2(x) combined in the proportions a and ( I- a) respectively may be written 
as 

Let f 1( x) be the density function of the Poisson component, which we 
w r i t e  as 

Let f2(x) be the density function of the negative binomial component, which 
may be written as 

f (x )  = 	
F(x + k) p k ( I - p ) x  ; x = O , i , 2  . . .  ,
x! r ( k )  
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as 

o r  as 

f(x)  = x! r ( k )  ; x = o ,  1, 2 . . . )  

where q = ( i - p ) / p ,  m = q k ; m , k , q > O ; O < p < i .  

Estimat ion of Parameter s  

When f2(x)  assumes the form given in equation ( 9 ,  the first four 
factorial moments and the zero probability of the mixed distribution are 

'1 11 
= a h + ( i - a ) m ,  

'[ 21 
= a h 2 +  ( I  - cy)(k+ i )m2/k , 

'1 31 
= ah3+(i-a)(k+i)(k+2)m3/2, 

'1 41 
= a h 4 +  (1 - c y ) ( k +  i ) ( k +  2 ) ( k +  3)m4/k3 , 

-A -k
f (0)  = P = a e  + ( l - c y ) ( i + m / k )  . 

On equating the above moments to corresponding sample moments and 
on setting P = no/n for  a random sample of size n where no is the number of 
zero observations in the sample, we obtain a system of equations, any four of 
which might be solved simultaneously for  estimates of the parameters c y ,  

A ,  m and k. Here ,  we consider estimates based on (a) the first four moments, 
and (b)  on the first three moments and selected frequencies. 

4 



Equate p 
[ I ] '  

and p 
[31 

to X, 
' 
v 

121 
and v 

[ 31 
respectively; the 

first three moments of ( 6 )  become 

-
x = a h + ( l - a ) m ,  

= ah' + (I- a ) ( k +  I)m'/k , (7) 

v 
[ 31 

= ah3 + ( I  - a )( k  + I)  ( k  + 2)m3/k2 , 

where 

R-
x =  C x nx/n , 

x=o 

R 
v 

[ j l  
= C x ( x  - I ) .  . . ( x  - j + i ) n

X
/n , 

x=o 

in which n denotes the number of sample observations fo r  which the random 
X 

variable X = x, and R denotes the largest observed value of X. 

Let us assume that h is known. We then solve the first equation of (7) 
for  m and thereby obtain 

x - ah. m =  
I - a  

On substituting this value into the last two equations of (7), and simplifying, 
we obtain 
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With A thus assumed to be known, we eliminate k between the two equations of 
( I O )  to obtain a quadratic equation in cr which we wri te  as 

a2- BO!+ C = 0 , (11) 

where 

The required estimate a* must  be a positive root of (11) such that 
0 < a* < I and such that corresponding estimates m”’ and k’k are both positive. 
For some combinations of sample data, such an  estimate may not exist  and for 
some samples, both roots of ( 11) may satisfy the criteria set forth above for 
acceptable estimates of a. In the former case we can conclude only that either the 
sample data fail to conform to the model specified by equation ( 1) o r  the sample 
is too small. When the solution of equation (11) produces two acceptable 
estimates of Q ,  we might choose the one which produces the closest  agreement 
between the expected and the observed fourth moment o r  between the expected 
and observed number of observations in some specified class. For example, 
the zero class or  perhaps the modal c lass  might be chosen. 

6 




With a* determined, we estimate m from (9)  as 

and k from the first equation of (10)as 

o r  as 
-1  

V - a*A2
[ 21 

k* = [ ~ i - , * ) ( m > % ) 2  -I]- * 

The aster isks  employed here  serve  to distinguish estimators or  estimates 
f rom the parameters  being estimated. When desired,  estimates of p and q 
as employed in ( 3 )  and (4) may be expressed as 

q* =m*/k* , p* = i/(l+ q * )  . ( 16) 

Est-matgs Based on First Four Moments. The foregoing resul ts  are 
based on the assumption that A is known. If indeed this assumption were t rue,  
our  task would now be complete. In the more  general case, where A too must  
be estimated from the sample data,  we might begin by assuming a value A 

(1) 
as a first approximation and subsequently compute first approximations o!

(1), 
m (  1) 

and k
(1) 

using (11), (13) and (14) , or  (15). On substituting these 

values into the fourth equation of (6)  , we calculate a f i r s t  approximation to 
the fourth factorial moment, p for  comparison with the corresponding

[ 4 1 ( ~ )  
sample moment v 

141. 
Once we have found two values A 

( i )  
and A ( i+l)  in a 

sufficiently narrow interval such that v 
[ 41 

is in the interval ( p
[41 (i)' 

'[4](i+I) ) , we can interpolate linearly as indicated in  Table I to determine 

final estimates a* , A * ,  m* , k* for  which the first four sample moments are 
in agreement with the f i r s t  four distribution moments. 
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TABLE I. LINEAR INTERPOLATION FOR FINAL ESTIMATES 


A* kak V - - -t 41 

Estimates Based on First Three Moments Plus Frequency in  a Selectee 
Class. Because of larger sampling e r r o r s  that are inherent in higher moments, 
it might sometimes be desirable to exchange the fourth equation of ( 6 )  which 
involved the fourth moment for  an equation setting the observed proportion of 
observations equal to the expected proportion in a selected class. F o r  example, 
the zero class might be chosen in which case we would employ the fifth equation 
of ( 6 )  rather than the fourth. In general, however, we might wish to employ 
the modal class. We begin with a first approximation A 

(1) 
and subsequently 

determine Q 
(1)’ “(i) 

and k 
(1) 

from the first three moments using equations 

( i i ), (13) and (14) o r  ( i 5 ) ,  as before. We then compute f 
( 1)

(x) for the 

selected value of x using equation ( i) and compare the value thus obtained 
with the observed proportion n /n. Subsequently, we determine second 

X 

approximations A 
( 2 ) ’  7 2 )  ’ m(2)  

and k 
( 2 ) ’  

With these values substituted 

in ( i), we compute f 
(2 )  

(x). A s  soon as two values A 
(i) 

and A (i+i)in a 
sufficiently narrow interval have been found such that nx/n is in the interval 

i f ( .  (x)9 f(i+i) (x)] , we interpolate linearly as indicated in Table II fo r  the 
1) 

final estimates A**, a!* * , ma** , and kaka*. 

The double asterisks distinguish estimates based on the first three 
moments and a selected density from those based on the first four moments 
(designated with single as ter isks)  and from parameters  being estimated 
(without asterisks) . 

8 


I 




- - 

TABLE 11. LINEAR INTERPOLATIONS FOR FINAL ESTIMATES 

I A a m k f (  x) 

A* * CY* * m* * k** nx/n-

In both of the estimating procedures presented here ,  a first approxima­
tion to A in the vicinity of X should usually be satisfactory. 

An IIlustrat ive Example 

To illustrate the practical application of estimating procedures developed 
here  , we construct a sample consisting of 1000 observations from a mixed 
Poisson and negative binomial distribution for which (Y = 0.4,  A = 3, m = 4. 5 
and k = 3. Data for this sample a r e  shown in Table III. 

For this sample, n = 1000, 57 = 3.915, I, 
[21 

= 20.034, v 
[ 31 

= 134. 946 

and v 
[ 41 

= I ,  138.536. On substituting these values into ( 12) , we have 

B =  -274.408722 + 291. 81222 A - 64.808775 A' + 3. 915 A3 
-

9134. 946A - 60.102 A2 + 11.745 A3 - A4 

32. 65690365 
'C =  134. 946 A - 60.102 A' + 11.745 A3 - A4 

9 




TABLE III. SAMPLE FROM MIXED POISSON AND 

NEGATIVE BINOMIAL DISTRIBUTION 


X n 
X 

0 58 10 16 
1 129 11 11 
2 172 12 8 
3 172 13 5 
4 142 1 4  4 

5 103 15 2 
6 7 1  16 2 
7 47 17 I 
8 32 18 I 
9 22 19 I 

20 1 

As a first approximation, we let  A 
( 1) 

= 3.2 and when this value is 

substituted in the above expressions for  B and C ,  equation ( 11) becomes 

a2- 1.28688692 (Y + 0.33881630 = 0 . 

Solving with the aid of the quadratic formula, we find 

_ -a - ' 11.28688692 f d 0.30081276 1 ,
(1)  2 

from which 

a = 0. 36921 o r  0. 91768.
(1) 

10 




When the smaller  of these values , is  substituted into ( 13) and ( 15) ,  we 
find 

- 3. 915 - (0.36921) ( 3 . 2 )  = 4. 3335 , 
- 0. 63079 

k = [ 1.372078942 - 1]-'= 2. 6876 . 
(1) 

When the l a rge r  root of the quadratic equation is substituted into (13)  
and ( 1 5 ) ,  we obtain a negative value for  k. Since, however, k must  be 
positive, the la rger  root is rejected and the values given above as based on 
the smaller  root are accepted as first approximations to m and k and the 
smaller  root itself is accepted as our first approximation to a. Using the 
values thus calculated, we employ the fourth equation'of ( 6 )  to calculate as a 
first approximation to the fourth factorial moment 

p f 4 ]  = 1165. 32 , 

which is to be compared with the sample value v t 41 
= 1138. 536. 

For a second approximation, we choose h
( 2 )  

= 2 . 8 ,  and following the 

same procedure as with the first approximations, we find (Y 
( 2) 

= 0.42645,  

m ( 2 )  
= 4.7440,  k

( 2 )  
= 3. 4127 and 1-1 

[41 (2 )  
= 1145. 72. We ultimately t ry  a 

third approximation (Y 
( 3) 

= 2 . 7  for  which p 
[41 (3 )  

= 1138.27. The resul ts  of 

these different approximations are summarized in Table IV and the tables 
following. 

In solving equation ( 11) for  various values of A as shown above, the 
smaller  root was chosen as the appropriate approximation to the estimate of 
(Y in each case as the larger root, even when otherwise acceptable, resulted 
in a greater disparity between observed and expected number of observations 
in the zero class.  

11 
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TABLE IV. FIRST APPROXIMATIONS 


A 

2.6 

2.7 

2. 8 

3. 0 

3.2 

- .~ ~ _ _  - -

Estimating Equations 
~ _ - - .~ . ~~ 

a2 - I.09214560~+ 0.31012438 = 0 

cy2 - 1. 13280360~~+ 0.31327564 = 0 

a2 - I.16985786~~+ 0.31702728 = 0 

a2 - 1. 23410203~+ 0.32645477 = 0 

a2 - I.28688692~+ 0.33881630 = 0 

TABLE V. SECOND APPROXIMATION 
I. .--.- ­
~ 

A Q m P ’[ 41 
-~ -

~ ~ 

2. 6 Imaginary 


2.7 0.47960 5.0347 3.9421 1.2772 0.4391 1138.27 


2. 8 0.42645 4.7440 3.4127 I. 3901 0.4184 1145.72 

3. 0 0. 38403 4.4855 2.9614 I. 5146 0.3977 1155.96 

3. 2 0. 36922 4.3335 2. 6876 I.6124 0.3828 i i65.  32 

-. - -... -

Additional computations were made with A = 2. 6 and A = 3. With 
h = 2.6, equation (11) has  no real roots and thus this value must  be rejected. 
Approximations corresponding to A = 3 are included in Table V. For final 
estimates based on the f i r s t  four moments, we interpolate between approxima­
tions corresponding to A = 2.7 and A = 2.8 as shown in Table VI. 

12 




TABLE VI. FINAL ESTIMATES BASED ON 
FIRST FOUR MOMENTS 

A o! I I %I 

2. 8 0.42645 4.7440 3.4127 1145.72 

2.704 0.47777 5.0242 3.9229 1138.54 

2.7 0.47960 5.0347 3.9421 1138.27 

Accordingly, final moment,estimates are A* = 2.704, a* = 0. 4778, 
m* = 5.024, kJg = 3. 923, 9::: = I. 280, p* = 0. 439, which are to be compared 
with the actual distribution parameters ,  A = 3, (Y = 0. 4, m = 4. 5,  k = 3, 
q = I. 5, p = 0.4. 

Somewhat improved estimates are obtained when the frequency in the one 
class rather  than the fourth factorial moment is utilized as the basis for  our  fourth 
estimating equation. Estimates,  thus based on the first three moments and the 
frequency in the one c lass  are determined by interpolation as indicated in 
Table VII, where for a given value of A, f (  I)  is calculated using the probability 

TABLE VII. INTERPOLATION DETERMINING ESTIMATES BASED 
ON THE FIRST THREE MOMENTS 

A (Y m k f (  1) 

3. 0 0.38403 4.4855 2.9614 0. 12896 

2.996 0. 38495 4.4911 2.9712 0. 12900 

2. 8 0.42645 4.7440 3.4127 0. 13080 

function ( I )  with values fo r  o!, m ,  and k based on the first three moments, 
determined as previously described. Final estimates based on the first three 
moments and the frequency of ones are thus A** = 2.996, a*’::= 0.385, 
m*4 = 4.49, k** = 2. 97 and from (16) q’k* = I. 51 and p** = 0.40. 

13 
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Essentially these same estimates a r e  obtained , when our  calculations are based 
on frequencies in the zero , two , three,  or four classes o r  even on a combination 
of these classes rather than on the one c lass  as has  been done here. The im­
provement achieved by equating observed frequencies to expected frequencies 
rather than equating the observed fourth moment to the expected fourth moment 
apparently reflects the lack of stability in  the higher sample moments. The 
fact  that very small  changes in CY result  in quite large variations in the higher 
moments is also involved. For comparison all es t imates  calculated are listed 
in Table VIII alongside the true parameter values. 

TABLE VIII. ALL ESTIMATES ALONGSIDE 
TRUE PARAMETER VALUES 

Bas is Q m k q PI 
~~ 

Parameter  Values 0. 4 4. 5 3 1. 5 0. 4
1 3r 

~ 

0.478 5. 02 3. 92 1. 28 0.44 
~ 

0.385 4. 49 2. 97 1. 5 1  0. 40 
and Freq. of Ones 

~ 

14 
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ESTIMATION IN  MIXTURES OF TWO 
NORMAL DISTRIBUTIONS 

by A .  Clifford Cohen, Jr. 

Summary 

This paper is concerned primarily with the method of moments in 
dissecting a mixture of two normal distributions. In the general case, with 
two means,  two standard deviations, and a proportionality factor to be estimated, 
the first five sample moments are required, and it becomes necessary to find a 
particular solution of a ninth degree polynomial equation that was originally 
derived by Karl Pearson [ 4 1. A procedure which circumvents solution of the 
nonic equation and thereby considerably reduces the total computational effort 
otherwise required, is presented. Estimates obtained in the s impler  special 
case in which the two standard deviations are assumed to be equal are employed 
/asfirst approximations in an iterative method for  simultaneously solving the 
basic system of moment equations applicable in the more  general case in which 
the two standard deviations are unequal. Conditional maximum likelihood and 
conditional minimum chi-square estimation subject to having the first four 
sample moments equated to corresponding population moments,  are also con­
sidered. An illustrative example is included. 

Research was sponsored by the Aero-Astrodynamics Laboratory of the 
Marshall Space Flight Center,  National Aeronautics and Space Administration; 
Contract NAS8-11175. 

I ntroduction 

Distributions which resul t  from the mixing of two o r  more  component 
distributions are designated as "compound" or  "mixed" distributions. They 
may be further described by designating distribution types of the individual 
components. Such distributions arise in a wide variety of practical  situations 
ranging from distributions of wind velocities to distributions of physical 
dimensions of various m a s s  produced items. Compound normal distributions 
were studied as ear ly  as 1894 by Karl  Pearson [41 and later by Charlier 151 
and by Charlier and Wicksell [ 61. More recently, compound Poisson and 
compound exponential distributions have been studied by Rider 171 and by 
Cohen [i,2,8,9].Compound binomial distributions have been studied by 
Blischke [ IO]. 
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This paper is concerned with estimation of the parameters  el ,  ai,02, 
az,and Q! of the compound normal distribution with density 

where 

Karl  Pearson 141 derived estimators for  the parameters  of this distribution by 
equating sample moments to corresponding population ( theoretical) moments. 
The evaluation of his  estimators involved the solution of a ninth degree poly­
nomial equation. Before the advent of modern electronic computers, this was 
considered a rather  formidable obstacle to the application of his results. 
Charlier and Wicksell [ 61 succeeded in considerably simplifying Pearson's 
results. The present effort represents an attempt to simplify these estimators 
further in order  that they might be more  readily available for  use in appropriate 
practical applications. A procedure is presented whereby the direct  solution 
of Pearson's nonic equation can be circumvented through an iterative process 
which involves solving a cubic equation for  a unique negative root. In addition 
to considering the mos t  general case  in which all five parameters  of (I) 
must  be estimated from the data available in a given samp'le, some of the 
more  important special cases in which one o r  more  of the parameters are 
known in advance of making sample observations are also examined. 

Est imat ion in t h e  Genera l  Case 

Except for a few changes in notation, the presentation of this section 
is essentially that of Charlier and Wicksell [ 61. 

The k@ moment of f (x) taken about the origin may be written as 

00 00 

cl;c - Q! 1 x kf l ( x ) d x +  ( I  - a)1x kf 2 ( x ) d x ,  
--oo --oo 
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where f x) and f2(x) are density functions of the two component distributions 
as given in equations ( 2 ) .  The kth-central  moment becomes 

If we let 

m i = e i - pi and m 2 = 0 2- p i  , ( 5) 

the first non-central and the first five central  moments of ( I) follow as 

Without any loss  of generality let us suppose that 81 5 192. Accordingly 
GI 5 pi 5 8, and m i  5 0 5 m2. 

Upon equating population moments to corresponding sample moments,  
it follows from (6 )  that 

-4 e i  - XI + (I - CY)[e, - X I  = o (7) 
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where fT is the sample mean and v i ,  ( i  = 2 ,  3, 4, ... is the i g c e n t r a l  
moment of the sample. Equations (8)  accordingly constitute a system of five 
equations to be solved simultaneously fo r  es t imates  of the five parameters  
a ,  m1, UiY mz, 0 2 -

We eliminate a between the first and subsequent equations of (8) in 
turn and thereby reduce this system to the following four equations in the four 
unknowns ai, m i ,  02,m2: 

(Equation (9) concluded on following page. ) 
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In view of the presence of m i  and m2 in the denominators of ( 9 ) ,  we recognize 

that these equations and those subsequently derived from them are not valid in 

the symmetric case to be dealt with later in which m i  = m2 = 0. In all subse­

quent results presented in this section it is understood that m i  < 0 and 

m2 > 0. 


With the introduction of p in the first equation of ( 9 )  it follows that 

u 2 1 = m 4 + v 2 - m 2 1 ,  

ui = m2p + v2 - m i .  

On replacing 021 and u$ in the second, third and fourth equations of (9 )  
with the values given in ( 10) above, it follows after considerable algebraic 
manipulation that 

mim2[ i5(m1 + m2)p2- 20(m2, + m1m2 + mi)p 

+ 6 ( m i  + m2)( m i  + m2)I = -k5,2 
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3pv - 2rv = -v3 , 

3p2v - 2v( r2 - v )  = -k4 , 

15vrp2 - 20v(r2 - v)p + 6vr( r2  - 2v) = -k5 .' 

I 111II111I I  III I I..-1 I 1111 I 111 I -.I1 

where k4 and k5 are respectively the fourth and fifth o rde r  sample cumulants 
or  semi-invariants; i. e. , 

When referr ing to population (theoretical) cumulants, we employ the Greek 
kappa thus: 

Equations (11) accordingly constitute a system of three equations in the 
three unknowns, p ,  m i  and m2. 

In order  to further simplify the system of equations ( 11) , let 

r = m i + m 2 ,  and v = m l m 2  . ( 13) 

When these transformations are introduced into equations ( 11), the system 
becomes 

3pv - 2rv = -v3 , 

3p2v - 2v( r2- v )  = -k4 , 

15vrp2 - 20v( r2 - v)p + 6vr(r2- 2v) = -k5 .' 

On making the further transformation 

w = m ,  

20 




the system of equations ( 14) becomes 

3pv - 2w = -v3 , 

3p2$ - 2w2 + 2v3 = - k p  

We now eliminate /3 between the first and the second and between the 
first and the third equations of (16), and our  system becomes

I
2w2 - 6v3 - 3vk4i- 4wv3 - V: = 0 , 

~5w( 2w - ~ 3 - )20w2(2w - "3) 

2+ 20v3(2w - v 3 )  + 18w3 - 36wv3 = - 3 k ~  . 

By introducing the further transformation 

z = w + v 3 ,  

the two equations of (17) become 

2z2 = 6v3 + 3k4v + 3 4  
(19) 


2z2(z 3v3) + z( v i  - 4v3) + 3v2 + 2 4 ~ 3 ~ ~= 3k5v2 . 

When the expression for  2z2 from the first of the above equations is substituted 
into the second of those equations, we obtain 
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2 =  
-6V3v3 + 3 k p 2  + 9~3k4f -6 ~ 8  

Y2v3 + 3k4v + 4 4  

and when this value is reinserted into the first equation of ( 19) , we obtain a 
polynomial equation of the ninth degree in v, which for convenience we write 
as follows: 

where 

a 9 = 8  , 

aa=O , 

aT=28k4 , 

a6 = 1 2 4  , 

a5=30ki  + 24k5v3 , 

a4= 148k4v: - Ski , 

a3= 96 "34 - 36 v3k4k5+ 9 ki , 

3 = -( 21uik24 f 24v8k5) , 

ai = -32vtk4 , 

a. = - 8 4  , 

This is the well known nonic which was first given in 1894 by Pearson [4 ] .  

Since hen3 mi  < 0 and m2 > 0 , then v = mim2 < 0, and the required -
estimate v* is to be found as a negative real root of (21) .  Throughout this 
paper asterisks ( *  ) are employed to distinguish estimates from the parame­
ters being estimated. Prior to the advent of electronic computers, the task 
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of solving this equation would have been considered a formidable assignment. 
Today, however, modern computers are available to perform the otherwise 
burdensome calculations involved. The ninth degree polynomial can be 
evaluated for any desired value of v in the vicinity of v* either by straight­
forward substitution o r  by synthetic division. Standard iterative procedures 
will  quickly lead to the required value of v* . Once v* is determined with 
the desired degree of accuracy, the estimate w" follows from (20) and ( 18) 
as 

From ( 15) , we have r'+ = w:::/v* , and accordingly 

It  follows from the defining relations (13) , that estimates of m i  and 
m2 are the roots of the quadratic equation 

y2 - $:: y + v:;: = o .  (24) 

Thus, we have 

Using the first equation of ( 14) , we estimate p as 
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and from ( i o ) ,  we have 

Finally, from ( 5) and from the second equation of ( 6 ) ,  we have 

e 1 = m T  + X ,  

* ­e$ = m 2  + x ,  

a* = m$/(mf - m;) . 

Attention is again drawn to the fact that the preceding resul ts  are valid 
only if dl # e2. The symmetric case in which = e2 and thus m i  = m2 = r = 
v = w = 0 is treated separately in the section entitled "Estimation in the 
Symmetric Cases.  ' I  

Unfortunately, for  some combinations of sample data the nonic 
equation (21) may have more  than one negative root and accordingly we must  
choose between two o r  more  sets of estimates.  This lack of uniqueness bothered 
Pearson, and he suggested choosing the set of es t imates  which resulted in the 
closest  agreement between the sixth central  moment of the sample and the 
corresponding moment of the "fitted" compound curve. 

On Circumventing the Nonic Estimating Equation. In the event that 
r is known, we need only consider the f i r s t  two equations of (14 ) ,  and when 
P is eliminated between them, we have the following cubic equation in v:  

6v3 - 2r2v2+ (3k4 - 4rv3)v + vi = 0 . (29) 

Using Descartes' rule  of signs,  we find that this equation has one negative root 
plus either two positive o r  a pair  of imaginary roots. The negative root is 
the required estimate v" . 
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Using this value for  $6 and the known value for  r ,  the required esti­
mates  follow from ( 2 5 ) ,  (26)  , (27)  and (28)  as before. 

Even though r is not known a pr ior i ,  we might assume a value and 
employ the foregoing resul ts  to determine approximations to the required esti­
mates  which in  turn can be substituted into the final equation of (6 )  , to approxi­
mate the fifth central  moment, pp 

Let  r ( i )  designate the i& approximation to rx: and let p 5(i) designate 

the it& approximation to p: based on r 
( i ) '  

It should be relatively easy to find 

approximations r 
( i)  

and r 
(i+l)

such that the sample moment v 5  is in the 

interval ( p
5( i) ' '5( i+l)) . A s  shown in the following section, a satisfactory 

initial approximation to r can usually be found by assuming q = o2 and solving 
the appropriate estimating equation for  this special case. Once the interval 
between r 

( i) 
and r 

(i+i)  
has been narrowed sufficiently, the required esti­

mate r* can be obtained by simple l inear interpolation as indicated below. 

r p5 

r 
(i-tl) '5( i+l) 

With r specified, the well  known method of Horner which utilizes 
synthetic division procedures is quite effective in solving (29)  for  v. Any
standard iterative method, however, might be employed. A "trial and e r r o r "  
procedure based on l inear interpolation with direct  substitution in (29)  , though 
perhaps not very economical of computational effort, will generally give 
satisfactory results.  

Various special  cases in which one or  more  of the parameters are 
known o r  in  some way restricted are sometimes of interest. With fewer  
parameters  to be estimated, the number of sample moments involved is cor­
respondingly reduced and the estimating equations are accordingly simpler 
and easier to solve. Some of the more  important special cases  are considered 
in the next two sections. 
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~- -Conditional Maximum Likgliho-od and  Cgnditicgal Minimug Chi--quare 
Estimation. In o rde r  to eliminate the effect of sampling errors resulting from 
direct  use of the fifth order  moment, let us consider a conditional maximum 
likelihood procedure. The first four sample moments are equated to corres­
ponding population moments, and subject to this condition, r is determined so 
as to maximize 

Since derivatives of L f ( r )  a r e  somewhat unwieldy, the value of r which maxi­
mizes  L'( r) can conveniently be determined in most  practical  applications by 
actually calculating Lf( r )  for  several  values of r in the vicinity of its maxi­
mum and employing either finite difference or  graphical techniques. 

Grouped Data. In the case of grouped data, the conditional likelihood 
function might be expressed as 

i=i 

where k is the number of groups o r  classes into which the sample has been 
divided, n.

1 
is the number of sample observations in the i& c lass ,  x.

1 
is the 

upper boundary of the it& c lass ,  and 

In practice it is sometimes more  convenient to minimize chi-square than to 
maximize L f ( r ) .  Kendall [ l i  (Vol. 11, pp. 55-56)] has shown that with 
grouped data, the two methods are equivalent to the order  n-'). We are 
therefore free to choose the method requiring the leas t  computational effort. 
In the method of minimum chi-square, we seek the value of r which resul ts  
in the minimum value for 
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where ei = npi is the expected number of observations in the it& class subject 
to the restriction that the first four sample moments are equated to cor res ­
ponding population moments. A s  previously indicated, n. is the number of 

1

sample observations in the i& class. 

In practice,  chi-square can be calculated for  several  values of r in 
the vicinity of its minimum and the desired value of r can be determined 
either graphically o r  by employing finite difference techniques. 

Unrestricted maximum likelihood estimates would, of course,  be 
preferable to any moment estimates, but with five parameters  to be esti­
mated, the unrestricted maximum likelihood estimating equations become 
quite intractable. The conditional maximum likelihood procedures suggested 
here  a r e  believed to represent  a feasible compromise between the'need for  
estimating equations that are easy to solve and the need for  reliable estima­
ting procedures. 

Estimation When u1= u2= 0 

Here, we need only estimate the four parameters ,  81, 82,  cy and u 
where as in the general case O1 < 8,. Accordingly only the first four moments 
and or cumulants are required. Charlier and Wicksell [ 6 1  and Rao [ I 2 1  
among others have previously considered this special case. With 
crl = cr2 = cr, equations ( I O )  of the general five-parameter case  now become 

22 = mfi  + v2 - m i  = m2P + v2 - m2 . 

From this it follows that 

p = m 1 + m 2 = r ,  

2 = m l m 2 + v 2 = v + v 2 ,  

where r and v are as defined in (13). 
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The f i r s t  two equations of ( 14) which are applicable here  now become 

and subsequently 

From the first of the above equations 

r = -v3/v . (33) 

When this value is substituted into the second equation of ( 3 2 ) ,  and both sides 
are multiplied by v ,  the applicable estimating equation becomes 

From Descartes' rule of signs it follows that unless v: = 0 ,  equation (34) has 
a single negative root, which is the required estimate v:g regardless of whether 
k4 is positive or  negative. The other two roots are of no interest  to us  here.  
It is relatively easy to solve (34) for  v* using standard iterative procedures, 
and from (33) it follows that 

r::: -- -v,/v* . (35) 
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With r* and v* thus determined, the estimates m? , m t ,  Of, 0; 
and a* are given by (25) and (28) as in the general case, while f i 2  follows 
from the second equation of (31) as 

A first approximation tc-g in-the general case. In view of the relative 
ease with which estimates can be calculated when ul= a2,we are thus provided 
with a simple procedure f o r  obtaining initial approximations to r in  the general 
case. With u1 assumed equal to cr2, we obtain v as the negative root of 

(0) 


(34) , and calculate r = - V ~ / V ( ~ ), from (33). Unless the disparity between 
(0) 

01 and 02 is quite la rge ,  the resulting value, r provides a satisfactory
(0)' 

starting point from which we can iterate to the final estimate r'" in the general 
case. 

Estimation in the Symmetric Cases 

The compound normal distribution is symmetrical if (a)  Q! = 1/2 with 
0,= cr2 = (T, and if  (b) e = e2. In the former instance the compound distribu­
tion has been shown to be bimodal when Q2 - O 1  > 20, but otherwise unimodal 
[ 81. In the second case ,  the resultant distribution is always unimodal. In the 
limiting (tr ivial)  case in which e l  = G2 = 1-1 and ul= a2= (T, the resultant dis­
tribution degenerates into a single normal distribution ( p ,  O). 

Symm-etric-case with = -_-__-.- __1/2 and ui = cr2, ( e  f 0,). In this case, we 
need only estimate the three parameters 0,O 1  and 02.  From the second 
equation of ( 6 ) ,  with (Y = 1/2, it follows that mi = -m2 and from the first 
equation of (31) , r = p = 0. Consequently, from the second equation of (32 ) ,  
we have 

2v2 + k4 = 0 . (37) 

With the vanishing of the odd central population moments, equation (37) might 
have been obtained as a special case of (34) with v3 replaced by zero, which 
in this instance is the appropriate estimate of p3. 

29 



It follows from (37) that 

v* =--. 

With v* given by (38)  and with r = 0, the required estimates follow from 
(25)  (28 )  ,and (36)  as 

Symmetric case wi&Ji  = = e. Since estimating equations ( 9 )  in­
volve division by m i  and m2,  and since it follows that m i  = m2 = 0 when 
e l  = e2y neither equations ( 9 )  nor subsequent equations derived from them 
are applicable here. We estimate 8 from (7) as 

With the vanishing of the odd central moments, estimation of the three remain­
ing parameters , (I!, mi and 02 necessitates use of the second, fourth, and 
sixth central moments. Applicable estimating equations accordingly become 
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The first two of these equations follow directly from (8)  , and the third follows 
from (4)  with k = 6 when p6 is estimated as "6. 

From the first equation of (41)  , we have 

v;- o $  c 2  - v pa =  a i - a ;  ' and (1 - a ) . =m i - a f  

On substituting these values for a and ( 1 - a )  into the second and third equa­
tions of ( 4 1 ) ,  after considerable algebraic manipulations we obtain 

where k4 and k6 are the fourth and sixth order sample cumulants respectively; 
i. e . ,  

k4 = v4 - 3 4  , 

Let 

t i = o i - v2 and k = a : - v 2 ,  (45)2 

and equations (43)  become 
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* 
It follows from (46) that t? and are roots of the quadratic equation 

Accordingly 

i 

t: = 2 [ (kd5k4) - d (k,/5k4) + ( 4 k m  I , 

i$ = 2 [ (kd5k4) + r J (  k6/5k4)' + ( 4 k d 3 )  I . 

With t; and I$ thus determined, it follows from (45) and from (41) that 

-
and of course e* = x as given in (40) .  

Determining Which  Case Is Applicable 

In the absence of a pr ior i  information concerning whether o r  not one of 
the symmetric special cases is applicable in  lieu of the general case ,  the 
following criteria provide a basis for  resolving this issue.  

(a) If p3 = 0 and if ~4 < 0,  the compound distribution is symmetric with 
oi= o2 and with a = 1/2. 

(b)  If p3 = 0 and if K > 0,  the compound distribution is symmetric with 
el = e2. 

(c) If p3 = 0 and K~ = 0 ,  then el = 02, crl = 02,and the "resultant!' 
distribution is in fact a single normal distribution. 

Of course the third central moment is zero in  all symmetrical  distri­
butions , and the converse likewise is true. Therefore , the foregoing statements 
can be verified by examining applicable expressions fo r  the fourth cumulant, 
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which is defined as K~ = p4- 3p:. Using expressions from equations (6)  for 
p4 and k ,  the fourth population cumulant i n  the mos t  general case follows as 

When Q! = 1/2 and ai = a?,this implies that -mi = m2. With these values 
substituted into ( 50) , we have 

When 81 = 02, this implies that m i  = m2 = 0, and in  this instance ( 50) 
becomes 

When 81 = O2 and u1 = u2, it follows from (52)  that in  this limiting 
case K~ = 0,  since ( 52) is applicable in all cases where O i  = 02. 

In practical  applications our  classification problem is reduced to that 
of utilizing the sample statist ics v 3  and k4 = v4 - 3 4  in choosing the most  
acceptable hypothesis from among the following alternatives: H 

0:p3=0,K ~ = O '  
H I:p3=0, K 4 < 0 '  H2:~3"0,K4>0'H3:p3#O* 

An Illustrative Example 

To il lustrate the practical application of computational procedures de­
veloped in this paper,  we consider a mixed sample obtained by combining two 
separate component samples consisting of 334 and 672 observations respectively-
from normal populations. For these two component samples,  xi = 47.716,  
s: = 33. 5663, Ni = 334, x2= 57.607, si = 9. 1790 and N2 = 672. For the 
resultant mixed sample,  n = Ni + N2= 1006, x = 54. 32306, v2 = s2 = 38.9753,  
v3  = -233.876, v4  = 5365.13, v 5  = -67,821 and k4 = 807. 91. In an effort to 
compensate for  e r r o r s  caused by grouping, Sheppard's corrections [ 11 
(Vol. I, p. 71) 3 have been applied both in computing si and si for the 
separate components and in computing moments of the resultant mixed sample. 
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We obtain a first approximation to v by substituting the values given 
above for  k4 and v3 into equation (52)  and solving for the negative root. By
thus employing equation (52)  , we implicitly assume a1 = a2 for  this first 
approximation. In subsequent approximations, we abandon this restriction and 
accordingly replace equation (52)  with ( 2 9 ) .  For the first approximation our  
estimating equation, after making proper substitutions and simplifying, 
becomes 

v3 + 403. 955 v + 27,349 = 0 . 

With the aid of a desk calculator, straightforward substitution quickly 
yields as a solution the first approximation v = -25. 7. A first approxima­
tion to r then follows from (53)  as ( 1) 

1) 
= -( -233. 876)/(  -25 .7)  = - 9 . 1 0  . 

Using these values, first approximations to the basic parameters  follow from 
( 5 4 ) ,  (25)  and (28)  as cr2

i ( i )  
= cr2 = 14. 61, m 

i(1) 
= - i i . 3 6 ,  m 

2(  i) 
= 2 .26 ,

2 ( 1 )  
and ct 

(1) 
= 0. 166. On substituting these values into the last equation of ( 6 ) ,  

we subsequently calculate 1.1
5( 1) 

= -62,396 which is to be compared with the 

sample value, p5 = -67,821.  

A s  a second approximation to r, we let r = -4. 50 since further 
( 2) 

examination of the sample data with due regard for  the shape of the histogram 
indicates that a value in the vicinity of -4 o r  - 5  should be a good choice. This 
time we employ equation (29)  ra ther  than (34)  in determining our  new ap­
proximation to v. With r = r 

( 2 )  
= -4. 50, and with k4 and v 3  as previously 

given, equation ( 29) becomes 

On solving for  the negative root of this equation, we find as our  second 
approximation v 

( 2 )  
= -23.13. Using the above values for  r

( 2 )  
and v 

( 2 )  ’ 
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equations (25) , (26) , (27),  and ( 28) yield as second approximations to the 
remaining parameters  of interest ,  m 

l ( 2 )  
= -7.56, m 

2( 2) 
= 3.06, (Y 

( 2 ) .  
= 

0.288, p 
(2 )  

= -6.3705, cr2 = 29.983, and cr2 = 10.118. When these 
1(2) 2(2) 

values are substituted into the last equation of (6) , we have p
5( 2) 

= -68,186. 

For our  next approximation to r, we interpolate linearly as indicated below. 

r p5 

-9.10 -624 x I O 2  
-4. 82 -678 x I O 2  

-4. 50 -682 x I O 2  

With r = -4. 82, we subsequently calculate the remaining third 
(3 )  

approximations jus t  as the second approximations were calculated, except 
that this time we retain additional significant digits. We  accordingly obtain 

v (  3) 
= -23.521, p 

(3 )  
= -6.52777, m 

i ( 3 )  
= -7. 826, m 

2(3)  
= 3.006, 

(Y = 0.2775, = 28. 8156, u2 = 10.3167, and finally p = -67, 863. 
(3)  2( 3) 5( 3) 

Extrapolation using the values of p5 calculated above with r = -4. 50 
(2 )  

and r = -4. 82 yields r = -4. 87 as the next and final five-moment esti­
(3 )  (4 )  

mate of r. Corresponding to this value for r, final five-moment estimates of 
other parameters  of interest  become 07 = 46.456, = 5.352, 0; = 57. 320, 
ut = 3. 218 and = 0.2759. 

To calculate conditional minimum chi-square estimates,  we require 
values of x 2  for  several  values of r in the vicinity of the minimum. Since 
estimates of the basic parameters  are already available for  r = -4. 82 and 
r = -4. 87, we calculate expected frequencies and in turn x2 for  these values 
of r and subsequently make the same calculations for  r = -4, -3, -2. 5 and -2, 
utilizing equations (29) , (25) ,  (26) , (27) and (28) as previously described. 
Results of the pertinent calculations are summarized in Table M which 
follows. 

When the values of x2 from Table M are plotted against corresponding 
values of r ,  it is readily observed that the minimum value ( x2 = 0.72) occurs  
when r** = -2. 65. With this value fo r  r in  ( 29) , corresponding est imates  
for  the remaining parameters  of interest  are computed as before. Accordingly 
as final conditional minimum chi-square estimates,  we find Of * = 48. 304, 
d''% = 6. 042, = 57. 692, a;" = 2. 951 and = 0.3589. 
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TABLE M. SUMMARY OF ESTIMATES FOR VARIOUS 


Parameters 
Estimated 

V 

P5 

X2 


TRIAL VALUES O F  r 

r 

-4.87 -4.82 -4 -3 


-23.575 -23.521 -22.481 -20.098 


-7.867 -7.826 -7.146 -6.312 


2.997 3.006 3.146 3.312 


-6.5535 -6.5278 -6.1344 -5.7287 


28. 6397 28. 8156 31.7464 35.2933 


5.352 5.368 5. 635 5.941 


10.3513 10.3167 9.7791 9.0327 


3.218 3.212 3.127 3.006 


46.456 46.497 47.177 48.Oii 


57. 320 57.329 57.469 57.635 


0.2759 0.2775 0.3057 0.3441 


-67,821 -67,863 -68,657 -69,499 


3.20 3.06 I. 58 0.80 


-2.5 -2 


-20.001 -19.022 


-5.894 -5.475 


3.394 3.475 


-5.5644 -5.4317 


37.0327 38.7382 


6.086 6.224 


8.5705 8.0246 


2.928 2. 833 


48.429 48.848 


57.717 57.798 


0.3654 0.3883 


-69,835 -70,256 


0.74 0.98 


For comparison, the expected frequencies based both on the five-
moment estimates and the conditional minimum chi-square estimates are shown 
in Table X along with the observed frequencies. 

Agreement between observed frequencies and expected frequencies based 
on either set of estimates is satisfactory. However, in view of the large 
sampling e r r o r s  inherent in the fifth sample moment, it should come as no 
surpr ise  to find that in this example, x2 for  the five-moment estimates is 
substantially larger  than that based on the conditional minimum chi-square 
estimates. For comparison, both sets of estimates calculated from the mixed 
sample are shown i n  Table XI along with corresponding estimates based on the 
individual components. 
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TABLE X. OBSERVED AND EXPECTED FREQUENCIES FOR 
1006 OBSERVATlONS FROM A COMPOUND NORMAL 

Class 
Boundaries 

27. 5 - 31.5 

31. 5 - 35.5 

35.5 - 39.5 

39.5 - 43.5 

43.5 - 47.5 

47. 5 - 51. 5 

51. 5 - 55.5 

55.5 - 59.5 

59. 5 - 63. 5 

63. 5 - 67. 5 

67. 5 - 71. 5 

X2 


d . f .  

P 

DISTRIBUTION 

Expected Frequencies 

0bserved Based on Based on 
Frequencies Five-Moment Cond. Min. x2 

Estimates Estimates 

57 4..79 1 5.. 92 1 
20 21.2 20. I 

52 53.7 50. 8 

86 80. 5 84. 6 

98 94.1 103. 3 

200 217. 9 201. 6 

363 349. 5 353. 8 

164 163.3 167. 8 

l5I . 62 

3.20 0. 72 

3 3 

0.362 0. 868 

TABLE XI. COMPARISON O F  ESTIMATES 

Parameters Component 
Estimates 

Moment 
Estimates 

Min. x2 
Estimates 

61  47.716 46.456 48. 304 

62 57.607 57.320 57. 692 

*I 5.794 5.352 6.042 

0 2  3.030 3.218 2.951 

CY 0. 3320 0.2759 0.3589 
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In concluding, it is deemed appropriate to emphasize that the methods 
presented in this paper are recommended only with large samples. Further­
more ,  it is desirable that moments be calculated from the raw ungrouped 
data when possible. If the ungrouped data are not available, then at least 
grouping intervals should be relatively narrow in order  to minimize e r r o r s  
in the higher moments from this source. When moments can only be com­
puted from grouped data, it will usually be advisable to apply Sheppard's 
corrections. 
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ESTIMATION IN  MIXTURES OF POISSON AND 
MIXTURES OF EXPONENTIAL DISTRIBUTIONS 

by A. Clifford Cohen, Jr. 

Summary 

In the analysis of experimental data,  many of the distributions en­
countered are the result of combining two o r  more  separate component distri­
butions. Estimation in  these compound or  mixed distributions is therefore of 
particular interest  to aerospace scientists. Estimators are derived for the 
parameters  of a compound Poisson distribution with probability density function 

-P x e
-A 

A
x 

f (x)  = Q -x! + ( I  - a )  
X! 

, x = O y l y 2 , .  .. 

and for  a compound exponential distribution with probability density function 

where a is the proportionality factor ( 0  5 a 5 I) and where and A are com­
ponent parameters.  In addition to the more  general case in which all parameters  
must  be estimated from sample data, several  special cases  are considered in 
which one o r  more  of the parameters  are known in advance of sampling. 

The research  reported in this paper was performed under NASA Contract 
NAS8-I 1175 with the Aerospace Environment Office, Aero-Astrodynamics Lab­
oratory,  Marshall Space Flight Center Huntsville, Alabama. 

Introduction 

Many of the distributions encountered in  the analysis of experimental 
data are the resul t  of combining two or  more  separate component distributions. 
Accordingly, estimation in  these compound or  mixed distributions is of par­
ticular interest  to aerospace scientists. A previous paper [ I]dealt with 
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estimation in mixtures of two Poisson distributions; these previous results 
are extended here  to include several special cases wherein one o r  more  of the 
parameters  of the compound Poisson distribution are known, and in addition 
analogous estimators are derived for the parameters  of the compound expo­
nential distribution. 

The author wishes to acknowledge the assistance of Mr.  Frank Clark 
for  his work in establishing the IBM 7094 computer program described in the 
section entitled "Computational Procedures I '  and in the Appendix. 

Mixtures of Two Poisson Distributions 

The Probability Density Function. The probability density function of a 
compound distribution composed of two Poisson components with parameters  
1.1 and A, respectively, combined in proportions cy and i - cy may be written as 

For  convenience and without any loss of generality, we assume p > A. 

Three-Moment Estimators. The following estimating equations result  
from equating the first three factorial moments of a sample of size n to the 
corresponding theoretical moments. 

where 

O = p + A  and r = p A ,  
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and where the sample factorial moment v 
tkl 

is given by 

R n 
v t k 1  = C X ( X - i) ... ( x - k +i)- X 

n ’ x=o 

in which R is the largest observed (sample) value of the random variable x, 
n
X 

is the sample frequency of x, and 

R 
i n =  C n x .  

x=o 

For simplicity of notation, x has been written in place of v 
[ i l  f o r  the first 

sample factorial moment. 

On solving the last two equations of ( 2 )  simultaneously for  r and 8 ,  
it follows that 

-
e* = t 31 - x v [ 2 1

-2 

where the aster isk ( ” )  distinguishes estimators from the parameters being 
estimated. The required estimators of p and A follow as 

I 
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These est imators  are the two roots ri and r2 of the quadratic equation 

where p" = rl and A" = r2, (rl> r2). The proportionality parameter  Q is 
estimated from the f i r s t  equation of ( 2 )  as a* = (X- A:')/ (p" - A* ) .  

The estimators given in equation (6 )  were originally derived by 
Rider [133 but he employed ordinary rather  than factorial moments with the 
resul t  that his derivations were somewhat complicated and his expressions for 
0" and Pkwere more  involved than those given here.  

Estimators Based on the First Tw_oSample- Moments and the Sagple  
Zero-Frequency. It is well  known that the higher sample moments are subject 
to appreciable sampling e r r o r ,  and in  an effort to reduce e r r o r s  from this 
source,  the estimating equation based on the first two sample moments and 
the sample ze ro-frequency was derived [ 141 as 

E - A  - n d n  - e -A 
-

G(A) - A e-G(A) - e  -A ' 

in which 

where no is the sample zero-frequency. Equation (8)  can be solved for  
X' ': using standard iterative procedures and, with A" " thus determined, esti­
mators  of p and a follow as 
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The double as ter isk ($*)  distinguishes these estimators from the three-
moment estimators and in turn from the parameters  being estimated. 
Unfortunately, no simple procedure for solving equation ( 8) has been devised. 
However, a computer program based on iterative procedures described by 
Whittaker and Robinson [ 15 (Chap. VI) I has  been developed (see Appendix) 
to solve equation ( 8) , using as a first approximation the three-moment esti­
mate of A given by equation ( 6 ) .  

Estimation With Some Parameters  Specified.-

a. (Y Known 

In this case, we need only estimate p and A; for this purpose, 
the first two equations of ( 2 )  may be written as 

-x - Aa , = -
P - A  

-
x ( p  + A) - p A =  v 

[ 21 I 
where 8 and I? have been replaced by their defining relations as given in 
equation ( 3) . 

With a, known, we obtain the following quadratic equation in A from the 
two equations of ( 11) : 

;;L - a , u [ 2 1  
A2 - 2ZA i- = 0 .

1 - a ,  

On solving equation (12)  
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and from the f i r s t  equation of ( 11) 

p* = [X-A * ( l - a)I/a . 

b. 	 a a n d p  Known 

In this case, A may be estimated from the f i r s t  equation of ( 11) as 

e. a and AKnown 

In this case, it follows from equation ( 11) that 

-p = x - (1 - a ) A  
a 

d. pKnown 

In this case, we may employ equations ( 11) to estimate a and A. 
Accordingly, from ‘the second equation of ( 11) 

and from the first equation of (11) 

e. 	 AKnown 

In this case, the second equation of ( 11) gives 
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-


p"=  v[21 - x A- 9x - A  

and from the first equation of (11) 

-
cy* = x - A  

@ - A  ' 

Mixtures of Two Exponential Distributions 

The Probability Density Function. In many respects the exponential 
distribution may be thought of as a continuous analog to the discrete  Poisson 
distribution. In any event, estimating equations in mixtures of two exponential 
distributions quite closely parallel the estimating equations considered in the 
preceding section for mixtures of two Poisson distributions. Consider a com­
pound exponential distribution with probability density function 

The nonessential restriction that p > h is imposed as a matter  of convenience 
and without any loss  of generality. 

The kth-noncentral moment of x is 

m 

m '  = x k f (x )  d x =  k! [ a p
k + ( 1  - CY) Ak 1 . 

k O 

Accordingly, the first three noncentral moments are 



Three-Moment Estima-brs. When the f i r s t  three noncentral sample-
moments, designated V I ,  vi and v i y  respectively, with vi = x, are equated to 
the theoretical moments of ( 23) we obtain the estimating equations 

These equations differ from the corresponding equations f o r  mixed Poisson 
distributions only in  that v i / 2  and vi/6 have replaced the factorial moments 
v and v of the mixed Poisson distribution. 

[ 21 131 

On eliminating a! between the f i r s t  and second and between the first and 
third equations of (24)  , we simplify to obtain 

which a r e  completely analogous to the last two equations of ( 2 )  in the case of 
mixed Poisson distributions. Here,  as in the Poisson case, 8 and I7 a r e  defined 
by equation ( 3 ) .  Accordingly, on solving the two equations of (25) simul­
taneously, we have as estimators of 8 and I? 

which are analogous to equation (5)  for the mixed Poisson distribution. 
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Finally, with 8* and I? determined from (26)  , p* and A* follow 
from equation (6 )  as in  the Poisson case, and 8 follows from the f i r s t  
equation of (24)  as 

Estimation With Some Parameters  Specified. 

a. Q Known 

We need only replace v t 21 
with v;/2 and the quadratic equation of 

( 12) becomes, for  the present case ,  

1 

? - C Y  EL 
2 - 2ZA + 2 

= 0 .I - a !  

Accordingly , 

p* = z-h * ( l  -a!) 
a! 

b. CY and p Known 

In this case ,  the estimator fo r  h follows from the first equation of 
(24)  as 

h ­* --zcs5E 
i-a! ' 

which is identical with the corresponding estimator,  equation ( 15) , in the 
Poisson case. 

47 



c. Q and A Known 

In this case, it follows from the f i r s t  equation of (24) that 

d. AKnown 

In this ca se ,  we need only replace v t 21 
in equation ( 19) with 

4/2 and, accordingly, 

-x - A" 
p - A* 

Computationa I Procedu res 

The solution of the transcendental estimating equation (8)from the 
section entitled "Mixtures of Two Poisson Distributions If  provides an interesting 
illustration of iterative numerical computational techniques described by 
Whittaker and Robinson [ 151. To facilitate solution of equation (8), the de­
nominator of the left side is interchanged with the numerator of the right side,  
and the resulting equation becomes 

-
x - A  - G(A) - A-

no/n - e -A e-G(A) - e  -A ' 

where G(A) remains as given by equation ( 9 ) .  
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Equation (34) might be condensed to the form L(A) = R(A) where 

-
x - A  G(A - A  

-AL(A) = 
n o b  - e -A 

and R(A)  = -G(;) ' 

e - e  

The two functions L( A) and R(A) are essentially as plotted in Figure i 
below. 

I I 
A** h, 

FIGURE I.L(h)AND R(h)  

We begin with an initial approximation A. and iterate toward the value 
as described by Whittaker and Robinson I 15  (pp. 81-83) 1. The three-

moment estimate of A given by equation ( 6 )  of the section entitled "Mixtures 
of Two Poisson Distributions" provides a satisfactory value for  Ao. This 
initial approximation is substituted into the second equation of ( 35) to obtain 
Ro, which is merely an abbreviated notation for  R( Ao) . We then solve the 
equation 

49 




to obtain Ai, the next approximation. This cycle is repeated as many times as 
necessary to attain the desired degree of accuracy. Equation (36)  is itself a 
transcendental equation, though somewhat s impler  i n  form than the original 
equation ( 3 4 ) .  It is amenable to solution by the Newton-Raphson method 
[ 15 (pp. 84-86) 1. For  the it& cycle of iteration, the equation corresponding 
to (36 )  becomes 

-
x - A; 

which may be written as 

where 

and 

'i- i = (x- Ri-i n d n )  . 

Equation (37) may be readily solved using the Newton-Raphson method, 
where Ai:r+i, the ( r  + I)st i terant to Ai, is given by 

The f i r s t  derivative of f (  A.) follows from equation (38)  as
1 


f ' ( A )  = i + R  e-Ai  . 
i i-1 
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Accordingly, 

A s  an initial approximation Ai : O  to Ai’ it will usually be satisfactory to 

let AiZ0= Ai-l. The Newton-Raphson iterative technique is continued through 

as many cycles as necessary to attain the desired accuracy in  A.. More 
1 


specifically, this procedure is terminated at the end of the r@cycle,  the 
first cycle for which 

where 6, specifies the maximum permissible absolute value deviation. With 
A. thus determined, we calculate Ri, set up the new equation 

and continue the primary routine through k cycles. The k@ cycle is the first 
for  which 

where 6, specifies the maximum allowable absolute value deviation. The re­
quired estimate of A is then 
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II lustrat ive Examples 

Mixed Poisson Distribution. To i l lustrate the application of his  three-
moment estimators, Rider [131 chose an  example constructed by mixing equal 
proportions of two Poisson distributions with p = ,i.5 and A = 0. 5, respectively. 
These data are as follows: 

In summary, n = 2000, no = 830, E = 0.9995, v 
[21 

= i .  248 and v 
[31 

= I.734. 

Direct substitution of these values into equations (5)  and (6)  yields the three-
moment estimates 

p* = 1.4766563, 

A* = 0.47765894, 

CY*' = 0.52236479. 

The above resul ts  differ slightly from those given by Rider caused apparently 
by small  round-off e r r o r s  in his  calculations. 

Estimates based on the first two sample moments and the sample 
zero-frequency , calculated by a computer program of the routine described 
in  the preceding section, are 

p** = i. 4936, 

A** = 0. 4956, and 

a** = 0. 5049. 
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These estimates are in much closer  agreement with the actual population 
parameters  p = I.5, A = 0 . 5 ,  and (Y = 0. 5 than the three-moment estimates.  
Investigations are continuing with regard to the relative efficiency of the 
three-moment and the two-moment plus zero-frequency estimates;  but at 
least in the present instance, where a large proportion of the population is in 
the zero class, the two-moment plus zero-frequency estimates seem to be 
preferred. 

Mixed Exponential Distribution. To illustrate the application of esti­
mators  derived in this case, a sample of 2000 observations was selected from 
a mixed population constructed by combining two exponential distributions with 
p = 2, A = I ,  and (Y = 0.4. Data for  the sample selected are summarized as 
follows: n = 2000, X= I.42, vi = 4.38, and v i  = 21. 6. 

Direct substitution of these data into equations (26) , (6)  , and (27) 
yields as three-moment estimates:  

/A'" = 1. 85, 

A" = 1.02, 

(Y*= 0. 48. 
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Appendix 

FIND - A Computer Program* 

FIND is a Fortran IV computer program which calculates estimates for  
the parameters  a, p ,  and A of a compound (mixed) Poisson distribution. 
These estimates are calculated from (a) the f i r s t  three sample moments and 
(b) the f i r s t  two sample moments and the sample zero-frequency. 

In finding h for  the second case, the following equation is solved: 

- -A
x - A  - n d n - e  ~~ -

G(A) - A .-G(A) -A ' - e  

where 

-
and v 

121 ' x, and n d n  are known constants. FIND makes use of the Newton-

Raphson and geometrical iteration methods [ 151 in solving the equation. 

FIND requires ,  for  each data sample,  input values fo r  x,n d n ,  v 
t21'  

and v 
[31' 

punched on a single card.  Iteration continues through k < 500 

cycles until the absolute e r r o r  of equation (40) is less than 0.00001, i. e. , 
until 

ILk - RkI < 0,00001. 

If this cri terion is not met'when k = 500, the message "completed 500 itera­
tions with no successT1is given and the program stops. Should greater 
accuracy be required in the estimate of A, appropriate change should be 
made in the source program card  "TOL = 0.00 ... . ? I  

program presented was by Mr. Frank C. Clark. 
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FIND prints out the following: 

I. Values of the index, i. 

2. Values of A in  the Newton-Raphson iteration. 

3. 	 Values of 

ERROR = TEST I - TOL, 
where 

TEST = ILiZr - Ri-l I. 

4. a!, 1.1, and h based on the first three sample moments. (This  
value of A is used as the first approximation in the Newton-Raphson process.  ) 

5. a, 1.1, and A based on the first two sample moments and the 
sample zero-frequency. 
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F!ND ( F O R T R A N  I V )  

C.....ESTIMATION I N  M I X T U R E S  O F  TWO P O I S S O N  D I S T R I B U T I O N S  
D I M E N S I O N  L A M ( 4 0 0 0 )  
R E A L  M U I N U E ~ , N U E ~ ~ N O N I L A M ~ L , L A M B D A , M U ~  

1 READ(5,2)XRAR,NON,NUEZvNUE3 
2 	 F O R M A T ( 4 F 1 0 . 5 )  

T H E T  = ( N U E 3 - X B A R * N U E 2 )  / t MUFZ- ( XRAR**2 
CLAM = XBARaTHET-NUE2 
MU = ( T H E T + S Q R T ( T H E T * * 2 - 4 . 0 * C L A M ) ) / 7 . 0  
1 = 1  
L ' A M ( I ) =  ( T H E T - S Q R T ( T H E T * * 2 - 4 . O * C L A M ) ) / 2 . 0  

N=O 

A L P H A l =  (XBAR-LAM(I))/(MU'LAM(I)) 

K = O  

G = ( N U E Z - X B A R * L A M ( I ) ) / ( X R A R - L A M O I  

N = N + 1  

R = ( G - L A M (  I )  ) / ( E X P ( - G ) - F X P ( - L A , M (  I )  1 )  


9 C = (XBAR-NON*RI  
10 K = K + 1  

1 1 

L A M ( I + l )  = L A M ( I ) - f ( L A ~ ( I ) - R * E X P ( - L A M ( I ) ) - C ) / ( I . O + R * ~ X P ~ - L A M l I ) ) ) )  

L = ( X B A R - L A ~ ( I + l ) ) / ( N O N - E X P I - L A ~ l I + l ) ) )  

TOL = m O O 0 0 1  

T E S T l  = A B S ( L - R )  


C ...... 
60 	 F O R M A T ( 1 H  r I 5 , 5 X 1 E 1 5 . 8 , E 1 5 . 8 )  

ERROR = T E S T l  .- T O L  
W R I T E ( 6 9 6 0 1  I ,LAM(  I )  ,ERROR 
I F  ( T E S T l - T O L ) 2 0 , 1 5 , 1 5  

2 3  I = I + 1  
GO TO IO' 

20 G = ( N U E 2 - X R A R * L A M ( I + l ) ) / ~ X B A R - L A M ~ I + l ) )  
R = ( G - L A M ( I + l ) ) / ( E X P ( - G ) - E X P ( - L A M ( I + l ) ) )  

T E S T 2  = . 4 B S ( L - R )  

I F  ( T E S T 2 - T O L ) 3 @ , 2 5 , 2 5  


2 4  I = I + 1  
K=O 
GO TO 9 

C ...... 
1 5  I F ( 5 0 0 - K ) 2 2 9 2 2 , 2 3  

2 5  I F ( 5 0 0 - N ) 2 2 , 2 2 r 2 4  

2 2  W R I T E ( 6 - 2 8 )  

2 8  F O R M A T ( 4 2 H l C O M P L E T E D  5 0 0  I T E R A T I O N S  W I T H  NO S U C C E S S )  


GO TO 100 
30 	 M U 1  = ( N U E 2 - X B A R * L A M ( I + l ) ) / ( X R A R - L A M O )  

LAMBDA = L A Y ( T + l )  
A L P H A 2  = I X R A R - L A M ( I + l ) ) / I M U l  - L A M I I + I ) )  

C ...... 
W R I T E ( 6 1 5 0 )  

5 0  F O R M A T ( 3 9 H l E S T I M A T E S  BASED CN F I R S T  THREE MOMENTS) 
W R I T E ( 6 , 5 l ) M U , L A M ( l ) r A L F H A l  

5 1  FORMAT(1OHO MU = . E 1 5 . 8 , 1 C H  LAMBDA = E1'5.899H ALPHA = E 1 5 . 8 )  
W R I T E ( 6 9 5 2 )  

5 2  F O R M A T ( 7 4 H O E S T I M A T E S  BASED ON F I R S T  TWO S A M P L E  MOMENTS AND THE ZER 
10 S A P P L E  FREOUENCY 

W R I T E ( 6 , 5 3 ) M U l , L A M O D A I A L P H A 2  
5 3  F O R V A T ( 1 1 H O  MU = E 1 5 . 8 9 1 0 H  LAMBDA = E J 5 . 8 r I O H  A L P H A  = E 1 5 . 6 )  

GO TO 1 
100 STOP 

END 

56 




ESTIMATION OF PARAMETERS IN COMPOUND 

WE IBULL D !STR I BUT IONS 


by LeeW.  Falls 

Summary 
The two-parameter Weibull distribution has  been recognized as a useful 

model for  survival populations associated with reliability studies and life testing 
experiments. In the analysis of atmospheric data, the distributions encountered 
are often a result of combining two o r  more component distributions. These 
compound distributions are consequently of interest  to aerospace scientists. 
This paper presents a method for  estimation of the parameters of a compound 
Weibull distribution with density function. 

f ( x )  = (Yf I (X)  + ( I  - a) f2(x) , 0 < (Y < 1 

where 

and 

The parameters required are a ,  the proportionality factor,  yl, -y2, e l  and 02. 
The most general case of estimation will be considered in addition to a number 
of special cases that may be of practical value. 

Introduction 

The Weibull distribution, derived in 1939 by W. Weibull, has been 
recognized as an appropriate model in reliability studies and life testing. 
Numerous methods for  obtaining efficient estimates of the two parameters 
of this distribution have been outlined in recent years  [16-18,20]. 

In actual physical applications, however, a mixture of two Weibull 
distributions often seems to be a more  desirable model. Distributions re­
sulting from mixing two o r  more  component distributions are designated as 
"mixed" o r  %ompound. This situation is quite common in the analysis of 
atmospheric data and consequently is of interest  to aerospace scientists. 
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Compound normal, Poisson and exponential distributions have been studied 
by A. C. Cohen, Jr. [2,3,19].A method for estimating parameters  of mixed 
distributions using sample moments has been outlined by Paul R. Rider [13] 
who considered compound Poisson, binomial, and a special case of the corn-
pound Weibull distribution. A graphical procedure fo r  estimation of mixed 
Weibull parameters  in life-testing of electron tubes is given by John H. K. 
Kao [ 201 . Although graphical methods have value fo r  locating outliers,  
deriving initial es t imates ,  and for determining whether the distribution is .as 
hypothesized, fo r  estimation purposes the analytic approach is probably 
superior. 

This paper represents  an attempt at estimating, by the method of 
sample moments,  the five parameters  of the compound Weibull distribution 
with density function 

f (x)  = af1(x) + (1 - a )  f2(x) , 0 < a < 1 (1) 

where 

The parameters  involved a r e  two scale parameters  e l  and 82, two shape 
parameters  yi and y2, and the proportionality parameter  a which expresses 
the probability that a given observation xi comes from the population fl .  

The compound cumulative distribution function is defined 

Figures 2 and 3 illustrate a generalized mixed Weibull probability 
density function and its corresponding distribution function. 
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The most  general case of estimation will be considered in  which all 
five parameters must  be estimated from the data. Also, a number of special 
cases will be investigated in which certain parameters  are known in  advance 
of sampling o r  are restricted in some manner. Included will be the special 
case where yl = i, i. e. , 

which is the well-known exponential distribution. Estimating procedures are 
greatly simplified in these special cases  as there are fewer sample moments 
involved in the estimating equations. Also, sampling e r r o r s  a r e  reduced 
because of the elimination of the need for higher order  moments. 

Estimation in the General Case 

The rth- theoretical moment about the origin of f (x)  is given by 

m m 

p; 
= a s xr f i (x)  dx + ( i  - a )  s xr fz(x) dx 

0 0 


where f i (x)  and f2(x) are defined as in equations ( 2 ) .  The f i r s t  five theo­
retical moments about the origin of (. i) follow as 

(Equation (6)  concluded on following page. ) 
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( Con­
cluded) 

where is the gamma function, i. e. , 

00 


r ( k )  = yk-' e-'dy. 
0 

Employing the technique of equating population moments to correspond­
ing sample moments,  the set of equations ( 6) becomes 

where m'i (i  = I,2, ... , 5) is the i& noncentral moment of the sample. 
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The set of equations (7)is a system of five equations which must be 
solved simultaneously for  estimates of the five parameters  a, e,, 02, yi and 
-y2. For convenience in  handling these equations, we will make the following 
transformations where necessary in this paper. (Thisnotation will be used 
unless stated otherwise. ) 

Let 

v = 8,i / Y  i 

n = 8,V Y 2  

Thus , the first three equations of (7) become 

Solving ( 9) for v ,  substituting this expression into ( 10) , and then solving 
for  n yields 
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Substituting the expression for  n from (12) back into (9) and solving for 
v gives 

Upon substituting the expression fo r  n from (12) and the expression fo r  v 
from ( 13) into equation ( 11) , we' have one equation in the three unknowns 
a ,  y i  and y2. A t  this point, it is obvious that explicit expressions for  the un­
known parameters a ,  y l  and -y2 cannot be obtained. Therefore , it is suggested 
that the following procedure be used to obtain a graphical estimate of a!,the 
proportionality parameter. This method is essentially that of Kao [ 2 0 ]  and is 
based upon the fact that a simple Weibull cumulative distribution becomes a 
straight line in In versus In-ln coordinates. This method of estimating a 
will produce a relatively small e r r o r  in the estimating procedure since (Y is 
limited to the range 0 < a < I. 

a. Plot the sample cumulative distribution function for  the mixed data 
on special In versus In-ln paper and visually f i t  a curve (called Weibull plot) 
among these points. * 

b. Starting at each end of the Weibull plot, draw two tangent lines and 
A n

denote them by aF1 and ( I  - a )F2which are estimates of a F l ( x )  and 
(I- a )Fz(x ) ,  respectively. 

A 
c. 	 A t  the intersection of ( I - a )F2 with the upper borderline drop 

n 
a vertical line whose intersection with aFi as read from the percent scale 
gives our estimate of (Y. 

See Figure 5 under the section entitled "An Illustrative Example" for  an 
illustration of this method. 

Once an estimate of (Y has been determined graphically, solve equa­
tion (11) for  y i  and 'yz by the following iterative procedure. This procedure 
is taken from Cohen [3] and is a modified Newton-Raphson method. 

* Special Weibull graph paper is available from Cornel1 University, Ithaca, 
New York. 
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Assume a value for yi and solve equation ( ii) for  a first approxi­
mation to y2. These first approximations can be substituted into (12) and (&) 
to obtain first approximations to Oi and 02. The first set of approximations 
is then introduced into the fourth equation of ( 6 )  to approximate the fourth 
noncentral theoretical moment, p:. 

Let y i ( i )  denote the i& approximation to yi and let denote the 

i& approximation (corresponding to y 
i ( i )  

) to pi. It should be relatively 

easy to find approximations yi( i) 
and y i( i+l) 

such that the sample moment 

m i  is in the interval b'4( i) 9 '4( i+i)1. Once the interval between y 
i(i) 

and 

'i (i+i) has been narrowed sufficiently, the required estimate yi can be ob­

tained by a simple linear interpolation as indicated below. 

The required estimate of y2 can subsequently be obtained from equation ( li). 
Once yi and y2 have been determined by equation (11), estimates for 81 and 
O2 are obtained from equations (13) and (12) , respectively. 

Unfortunately, the quadratic solutions in equations (12) and (13) 
result  in more than one set of estimates. The problem of non-unique sets 
of estimates was considered by K a r l  Pearson [4] and A. C. Cohen, Jr. [3] 
in connection with mixtures of two normal distributions. Pearson suggested 
choosing the set of estimates which gives closest  agreement between the sixth 
sample moment and the sixth theoretical moment after equating the first five 
sample moments to the corresponding theoretical moments. This procedure 
is followed for all acceptable sets of estimates. 

Cohen [ 31 suggests, as an alternate procedure for  resolving the 
problem of multiple sets of estimates,  that we might choose the set of esti­
mates which produces the smallest  Chi-square Index of Dispersion when 
observed frequencies are compared with expected frequencies. 
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In the general case of estimation considered here,  we are concerned 
with a mixture of two Weibull distributions where the proportionality factor a! 
is estimated graphically from the cumulative frequencies and the four re­
maining parameters are estimated by equating the first four sample moments 
to corresponding theoretical moments. When confronted with more  than one 
set of acceptable estimates we adopt Pearson's suggested procedure and 
choose the set which produces the closest agreement between the fifth non­
central moment of the sample m i  and the theoretical moment pi given by 
the final equation of ( 6). 

The calculations described above may be carr ied out iteratively with 
relative ease using the computer program included in this paper as an 
Appendix. First approximations to initiate the iterative process may be ob­
tained using a graphical method such as that of Kao [20,]. 

Estimation in Special Cases 

A number of special cases that may be of practical value in which 
certain parameters are known o r  are restricted in some manner are con­
sidered. 

0,Known. With O1 known, we must estimate the parameters 0,02, 

Of'", equations (9)  (IO) and (11) becomeyi and y2 only. If we let v = 

Solving (14) for a gives 
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Inserting this expression f o r  a! into equation ( 15) and solving for n, we obtain 
after considerable algebraic manipulation 

Substituting this expression for n back into ( 17) gives 

Now, upon substituting the expression for  n from (18) and the expression for  
a! from ( 19) into equation ( 16) , we have an equation in the two unknowns yl  
and y2 which may be solved by the iterative procedure described in the general 
case, Once yi and -y2 have been determined, we obtain our  estimates for O2 
and a! from equations (IS) and (19) , respectively. A s  in the general case ,  
the positive and negative roots resulting from the quadratic solution in (18) 
unfortunately resul ts  i n  more  than one set of estimates. A s  before, it is 
suggested that the set of estimates which gives the closest  agreement between 
the fifth noncentral moment of the sample and the corresponding "fitted" com­
pound curve be used. 

Known. With t12 known we need only estimate a! ,  e l ,  y1 and y2. 

If we let n = f3t/y2,equations (9)  , ( I O )  and ( li)become 
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Solving (20)  for  Q gives 

Inserting this expression for Q into equation (21 )  and solving fo r  v,  we obtain 
after considerable algebraic manipulation 

Substituting this expression for  v back into (23)  gives 

Now, upon substituting the expression for  v from (24)  and the expression for  
CY from (25)  into equation (22)  , we obtain an equation in the two unknowns yi 
and y2 which may be solved by the iterative process described previously. 
Once yi and y2 are determined, we obtain our estimates for e l  and Q from 
equations ( 2 4 )  and ( 2 5 ) .  A s  in the case of known, the positive and nega­
tive roots resulting from the quadratic solution in (24)  gives more  than one set 
of estimates. Again, it is suggested that we choose the set of estimates which 
gives the closest  agreement between the fifth noncentral moment of the sample 
and the corresponding fffittedffcompound curve. 

yi Known. If yi is known we must  estimate a',el,  O2 and 72 only. 
Solving equation ( 9 )  for  v gives 

m i  - (1 - a) nqi 
v =  

QPi 
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Inserting this expression for  v into equation ( 10) and solving for  n, we 
obtain 

-n=-

Substituting this expression for n back into (26) gives 

Upon substituting the expression for  n from (27)and the expression for  v 
from (28) into equation (11) , we obtain an equation in the two unknowns cy and 
y2 which may be solved by the iterative procedure described in the general 
case. With a! and y2 determined we may solve equations (27)and (28)for 
O2 and el, respectively. A s  before, the positive and negative roots which 
result  from the quadratic solution in (27)give more  than one set of estimates. 
Again, we choose the set of estimates which gives the closest  agreement to 
the fifth noncentral moment of the sample. 

An alternate method for estimation in this case would be to estimate 
a graphically as in the general case and then solve equation (11) for  y2 after 
the substitution of the expression for n from (27)and the expression for  v 
from (28) into equation (11). A s  before, O2 and 01 would then be obtained 
from equations (27)and (28). 

y2 Known. With y2 known, we must  estimate a, 81, 8, and yi only. 
As in the case,  y1 known, solving equation (9) for  v gives 
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Inserting this expression for  v into equation ( I O )  and solving for  n,  we 
obtain 

When we substitute this expression for  n back into (29 ) ,  we get 

Upon inserting the expression for  n from (30)and the expression for v from 
(31) into equation (11), we obtain an equation in the two unknowns (Y and y1 
which may be solved by the iterative procedure described previously. With 
a and yl determined in  this manner,  we now solve equations ( 30) and ( 31) 
for  62 and 61, respectively. A s  before, we choose the set of estimates 
which gives the closest  agreement between the fifth noncentral moment of the 
sample and the corresponding "fitted" compound curve. 

A s  in the case of y1 known, an alternate method for  estimation would 
be to estimate a ,  the proportionality parameter graphically, and then solve 
equation (11) directly for  yl after the substitution of the expression for  n 
from (30) and the expression for v from (31) into equation ( 11). 

y1 = I.This is a special case of y1 known. Thus, the case is reduced 
to mixing an exponential distribution with a Weibull distribution where f l (x)  
in equations (2) is an exponential distribution and f2(x) is a Weibull distri­
bution. W e  need only estimate a ,  y2, 61 and 62. 

With y1 = I,equations ( 9) ,  ( I O )  and ( 11) become 
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where the only change in notation from previous cases is v = 81. 
Solving equation (32) for  v gives 

Substituting this expression for  v into equation (33)  and solving f o r  n gives 

Inserting this expression for n back into (35)  gives 

m;v = - -
a $1 

Now, upon substituting the expression for  n from (36)  and the expression for  
v from (37)  into equation ( 3 4 ) ,  we obtain an equation in the two unknowns a 
and yz which we may solve using the iterative procedure described in previous 
cases. With minor simplifications, equation ( 34) becomes 
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Once Q and yz have been determined from equation (38)we may obtain 
our  estimates fo r  8, and d l  from equations (36)and (37), respectively. 

A s  in the other cases ,  we choose the set of estimates which gives the 
closest  agreement between the fifth noncentral moment of the sample and the 
corresponding "fitted" compound curve. 

An alternate method of estimation would be to estimate Q graphically 
as in the general case and then solve equation (38) directly for  72.  As above, 
estimates for  O2 and e l  would then be obtained from equations (36)and (37). 

yl = y2 = Unknown. Changing our  notation slightly, we will let 
yi = y2 = y. Thus, we must  estimate a,y ,  81 and 82. Now, let 

pi  = r ($+ 1) p3 = r (t+I) 

With this notation, equations ( 9 )  , ( I O )  

m i  = avpI+ (I- a )  

m2 ' = a v 2 p 2 + ( i - a )  n p 22 

mi  = aV36+ (I - a) n3p3. 

A s  before, solving equation (39)f o r  v 

and (11) become 

gives 
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Inserting this expression for  v into equation (40)and subsequently solving 
fo r  n, we have 

Substituting this expression for  n back into (42)gives 

r 1 

Upon substituting the expression for  n from (43)and the expression for  v 
from (44)into equation (41), we obtain an equation in the two unknowns 
a and y which may be solved by the iterative process described in the 
general case. We may now solve equations (43)and (44)for O2 and el. 
A s  in the other cases, the quadratic solution in  equation (43)results in 
more  than one set of estimates. Again, we use  the set of estimates which 
gives the closest  agreement to the fifth noncentral moment of the sample. 

A s  before, an alternate solution would be to estimate a graphically 
and then solve the resulting equation (41)directly for  y. 

In the event that a is known in advance of sampling we may solve 
equation (41)directly for  y and subsequently obtain O2 and d1 from (43) 
and (44). 

yl = -y2 = Known. If we let y1 = y2 = y ,  the first three equations of (7)  
become 
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Thus, we must  estimate a,e l  and O 2  only. For simplification, we will ’c.t 

mj’ 
c. = 

J r ( t + i )  

Now, equations ( 45) , (46) and (47) become 

(49) and ( 50) , we have afterSubst tuting the expression for a! from 5 ~ l t o  
considerable algebraic manipulation the equations 

(53) 
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Inserting the expression fo r  8;” 8: /y  from (52)  into the left  side of equation 
(53)  , we obtain after simplifying 

Substituting this expression for  O f ”  back into equation ( 52) , we have after 

simplification the quadratic equation in e U Y  
i 

whose solution for  8 is
i 

Without loss of generality, we may impose the restriction that el < 02. Thus, 
we obtain 81 and 82 from equation (57)  using the negative and positive roots, 
respectively. Once we have determined and e,, we obtain our  estimate 
fo r  a from equation ( 5 1 ) .  

81 = = Known. If we let 81 = O2 = 8,  the first three equations of (7)  
become 
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Thus, we must  estimate the parameters a , y i  and y2 only. A s  previously, 
solving (58) for  a gives u s  

Substituting this expression for a into equation (59)  , we have after simplifi­
fying 

Equation ( 6 2 )  is an equation in the two unknowns y i  and y2 which may be 
solved by the iterative procedure described fo r  the general case of estimation. 
Once y i  and y2 are determined, we  obtain our  estimate for  Q! from equation 
( 6 1 ) .  

01 = = Unknown. For this special case ,  it is suggested that we solve 
for a graphically and subsequently follow the procedure outlined for  the 
general case of estimation. 
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An 1 Ilustrative Example 

To illustrate the estimation procedure outlined in this paper for  the 
general case,  we will consider a sample of 2000 observations selected from a 
mixed population constructed by combining two Weibull distributions with 
yi = 2.0000, O i  = iO.0000, y2 = 0.8000,O 2  = I.0000 and a! = 0.8000. The 
sample is summarized in  Table XI. For  the sample selected, mi  = 2.4708, 
m4 = 8.6270, mi = 36.3408, m i  = 174.9190 and mk = 935.3733. 

TABLE XI. A SAMPLE OF 2000 OBSERVATIONS FROM 
A MIXED WEIBULL POPULATION 

In Table XII, f i  = class  frequencies from f i ( x ) ,  fz = class frequencies from 
f2(x), and f = class  frequencies from the resulting mixed distribution. 
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Figure 4 is a graph of the compound densiw function and its compo­
nent distributions. Notice at this point that y 2 Iproduces a J-shaped function 
while y > i produces a bell-shaped curve. 

I 

X 

FIGURE 4. ILLUSTRATIVE EXAMPLE O F  MIXED 
WEIBULL DENSITY FUNCTION 

Employing the graphical technique described in the first section pro­
vides an estimate of a ,  the proportionality parameter ,  equal to 0.80 as shown 
on Figure 5. 

Once our  estimate of a has been determined graphically, w e  solve 
equation (ii) iteratively for first approximations to y l  and y2. Corresponding 
f i r s t  approximations for  B l  and 8, are obtained from equations (13) and ( i 2 ) ,  
respectively. Each set of first approximations is introduced into the fourth 
equation of ( 6 )  to approximate the fourth noncentral theoretical moment, 1-11. 
Each set of first approximations is also substituted into the final equation of 
( 6 )  to approximate the fifth noncentral theoretical moment p i ,  as suggested 
by Pearson [ 4 ] .  The set of estimates which gives the closest  agreement 
between the f i f th  noncentral moment of the sample m t  and the corresponding 
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FIGURE 5. WEIBULL PLOT 

"fitted" compound curve given by the final equation of (6)  is the required set of 
estimates. Utilizing the computer program given in the Appendix, we find 
that our estimate of yl lies between I.90 and 2.10. The corresponding 
estimates for  the remaining parameters , pi  and pk , are as follows: 

1- -
Y2 

~ 

2.30 11.52 1.29 343.8875 1926.6399 

2.10 0. 80 6.74 0. 82 64.6006 287.5141 
- I 

Our next approximation to y1 is obtained by simple linear interpolation as 
indicated below. 
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Substituting y1= 2.0210 into equation ( 11) , solving for y2 and subsequently 
solving equations ( 13) and ( 12) fo r  O1 and 02, we obtain y 2  = 0. 8339, 

= 10.1496 and O2 = 0. 9929. Introducing this set of approximations into 
the final equation of ( 6 )  gives p: = 935.3646. This value of pk is in such 
close agreement with the corresponding sample moment mk = 935.3733 that 
we are justified in accepting this set of approximations as our  final esti­
mates.  However, if fur ther  preciseness is desired,  this iterative process 
may be continued to any desired degree of accuracy. 

The computer program outlined in  the Appendix gives all possible 
solutions to the estimating equations. Specifically, equations ( 12) and ( 13) 
produce four solutions resulting from the four combinations of the positive 
and negative signs prefixing the radicals; i. e. , the combinations are ( -,-) , 
( -,+) , (+, -) and (+,+) . It was discovered that the computer program 
printout gave closest  agreement between the theoretical moment pk and the 
sample moment mk when the combination ( -,-) was used. 

Comparisons of expected with observed frequencies, along with a com­
parison of observed and expected distribution functions, are presented in 
Table XIII. I t  also seems appropriate to compare the observed frequencies 
for the mixed sample with these same frequencies assuming that the sample 
f i t s  a simple Weibull distribution. This will prove o r  disprove that our mixed 
sample could be treated as a simple Weibull distribution. Cohen's maximum 
likelihood estimation procedure [ 161, was used to derive estimates for  the 
parameters ,  and the resulting expected frequencies were obtained. Notations 
used in Table XI11 are as follows: 

f = observed frequencies f o r  mixed data. 
0 

F = observed distribution function fo r  mixed data. 
0 

f = expected frequencies using estimates derived in this report.e 
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F = expected distribution function using estimates derived in this c report. 

f = expected frequencies assuming data f i t s  a simple Weibull es distribution. 

F expected distribution function assuming data fits a simple
es  Weibull distribution. 

TABLE XHI. OBSERVED AND EXPECTED FREQUENCIES FOR 2000 
OBSERVATIONS FROM A M E E D  WEIBULL DISTRIBUTION 

CLASSES 

215 211.0 143.3 0. 1075 0. 1055 0.0717 
191 192.9 243.2 0.2030 0.2020 0. i932 
217 219. 1 271.9 0.3115 0.3116 0.3292 
235 237. 8 265. 8 0.4290 0.4305 0.4621 
236 238.9 239.9 0.5470 0.5499 0.5821 
220 222. I 204.6 0. 6570 0. 6610 0. 6843 
190 191.7 166.8 0.7520 0. 7569 0.7677 
154 ' 154.3 130.9 0. 8290 0. 8340 0. 8332 
117 116. 2 99. 4 0.8875 0. 8921 0.8828 
84 82. 73. 3 0.9295 0.9332 0.9195 
57 54. 6 52. 6 0.9580 0.9605 0.9458 
36 34.3 36. 8 0. 9760 0.9776 0.9642 
21 20.4 25.2 0.9865 0. 9878 0.9768 
12 ii. 5 16. 9 0.9925 0.9935 0. 9852 
7 6.2 if. 1 0.9969 0. 9966 0.9908 
4 3.2 7. i 0,9980 0. 9982 0,9943 
2 	 1. 6 4. 5 0.9990 0.9990 0.9966 
i . 8  2. 8 0.999% 0.9994 0.9980 
i .4 i. 7 i. 0000 0.9997 0.9988 

The agreement between observed frequencies for the sample and ex­
pected frequeneies using the derived estimates is very good as shown in Table 
X I I E .  The corresponding observed and expected distribution functions are in 
very close agreement with &e maximum absolute difference of 0.0050 occurring 
at the class 3. 5 - 4.0. Comparing this value with the Kdmogorov-Smirllov 
statistic, we see that 
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DN = D2Oo0= 0. 0364 
CY 0.01 

. . 

gives an excellent lfgoodness-of-fitll at the 99-percent level of confidence. 

Comparing F
0 

with Fes shows a maximum absolute difference in the 

distribution functions of 0.8358 occurring at the class 0 - 0.5. Since the 
Kolmogorov-Smirnov statistic 

this value of 0.0358 is suffilcient to reject  the hypothesis that our mixed distri­
bution could be considered a simple Weibull distribution. 

As an alternate goodness-of-fit test for agreement between observed 
frequencies and expected friequencies using the derived estimates, the x2 
index was calculated and the results are as follows: 

x2 = I.2669 d.f. = I O  P(x2 > I.2669 = 0.995) . 

Thus , in  consideration of the' low x2 index of dispersion,. we may conclude 
that we have an  excellent f i t  for the chosen sample; 

Conc I usion s 

It is an  accepted fact that the method of moments is not (except for  
distributions such as the normal, binomial, and Poisson) the most  efficient 
procedure for estimating the parameters  of a frequency distribution. Methods 
having maximum efficiency, such as the method of maximum likelihood, are 
more  desirable. However, in the case of the mixed Weibull distribution with 
its five parameters,  the maximum likelihood estimating equations a re  almost 
intractable. 

The central ,  noncenltral, and factorial moments of this distribution 
were investigated, and it was discovered that the noncentral moments possessed 
optimum characterist ics for the development of estimating equations. A 
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comparison of noncentral sample moments with the theoretical moments for the 
sample selected showed an  error of 0.09 percent for the first moment, 0.44 
percent for the second moment, I.64 percent for  the third moment, 4.94 
percent for the fourth moment, and 12.73 percent for the fifth moment. This . 

progressive increasing percentage of nonagreement between sample moments 
and theoretical moments i l lustrates the large sampling e r r o r s  involved in  the 
use of higher o rde r  moments. Using only the f i r s t  three sample moments 
with their relatively low percentage of e r r o r  in  the estimating equations pro­
duced very good agreement between final estimates and the population 
parameters  y l ,  y2, O1 and 02. Sheppard's corrections for  grouped data were 
applied to the sample moments in order  to increase this agreement, but pro­
duced no significant change in  the results; therefore,  the corrections w e r e  not 
used in the estimating equations. 

This paper presents an estimating procedure that produced very good 
results for  the sample chosen. The use of electronic digital computers makes 
the somewhat involved method practical and applicable to experiments in which 
the mixed Weibull distribution is the appropriate statistical model. 

In the author's opinion, the estimating procedures outlined in this 
report  warrant fur ther  investigation for  increase in efficiency, and improve­
ment and simplification of form for  the estimating equations involved. 

George C, Marshall Space Flight Center 
National Aeronautics and Space Administration 

Huntsville, Alabama, March 29, 1967. 
160-44-04-00-62 
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Appendix 

Computer Program for Estimating the Parameters 
of a Mixed Weibull Distribution 

3200 FORTRAN 
ESTIMATION IN MIXTURES OF mo wEmuLL DISTRIBUTIONS 

01  

17 

1 4  

1 5  

1 6  

1 7  
2 7  

7 R  
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10  

I F ( T P M I l ? r 9 1 ~ 0 1  
TQMl=S0WTfTWMI 

F R 5 = 7 . ~ * D ~ l ~ ~ l . ~ - A L P l * P S l l * ~ 7  

F N P = ( F W S + T R M l l / D F N  
‘ = N M = l C R 5 - T R M I l / D F N
E R 6 = 1 P ~ ~ 1 - ~ 1 ~ 0 - A L P 1 * P S l 1 1 / ~ A L P * ~ 1 1  

VP=ERCl*FNP 
VM=ERfi+FYM 
6fl TO 1 1 ? ~ 1 4 ~ 1 C . ~ 1 ~ 1 K  

V = V D  

F N - F N P  

GO TO 10 

V = V P  

F N = F Y M  

GO TO 10 
V = V M  
F Y = E N P  
GO rn i n  
V = V M  
EN=FNM 
GO TO in 
IFfFG7-c~M7-.~flnflOl)?R.?Q.77 

GAMZ=GAU7+DG? 

GO TO 9 n  

~ F I F G ~ - G A U ~ - . C ~ ~ ~ J 
i i w . i n n . 7 0  
GAM1 =GAM1 +061 
6 A M 2 = R 6 A M ?  
GO TO 25 
T H I = F X P l G A M l * b L O G I V I I  
T H 2 = F X P f G A M 1 2 * A L O G ( E N ) l  
F R = S . O / G A M l + l . f l  
T R V = G 9 M M b ( F R I  
CR-C..n/GAMZ+l.O 
T R M l  =GAMMA IFW I 
~ O l = A L P * I T H l * * l ~ . ~ / G A ~ l l l  
FR7nll.0-ALP)*lTH7**~C.~O/GAM7lI 
U P 5 = F R l * T R M + F R 2 * T R M l  
W R I T F l 6 1 . ? 6 l G b M 1 ~ G A M Z ~ T H l ~ T H % ~ U P C .  
GO TO 1 2  
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? + V * ( . O O 1 c ~ o 7 ~ n ~  - V * ( . 0 @ 0 2 4 4 7 2 a 7 0  - V * . 0 0 0 f l 6 7 7 i n ~ 7  
I F ( i r Y - 3 . 1  37,25990 

24 C A M w A = l *  
? e  R F T U R N  
30 	h3zN-I 

00 3 5  I = ? , &  
F I = I  

35  C A t J M A = G A M P A * ( F I + V )  
R F T U R N  

37 N=2.-FN 
DO 40 I = l , N  
F I = 2 - I  

4 0 GAMY A = GAVwA / ( F 1 + V  1 
R F T U R N  

SO W R I T E ( 6 2 9 7 5 )  
S T O P  
CND 

F I N I S  

GAMOOOOI 
G A M 0 0 0 0 7  
G A M 0 0 0 0 3  
G A M 0 0 0 0 4  
C A M 0 0 0 0 5  
7 1 M 0 0 0 0 6  
G A M 0 0 0 0 7  
G A M 0 0 0 0 8  
G A M 0 0 0 0 9  
C A M 0 0 0 1 0  
G A M 0 0 0 1  1 
G A M 0 0 0 1  7 
C A M 0 0 0 1  7 
G A M 0 0 0 1 4  
G A M 0 0 0 1 5  
CAM00016 
C A M 0 0 0  17 
CAMOOO 18 
C A M 0 0 0  19 
G A M 0 0 0 2 0  
C A M 0 0 0 2 1  
G A M 0 0 0 2 2  
G A M 0 0 0 2 3  
C A M 0 0 0 2 4  
G A P 0 0 0 2 5  
C A M 0 0 0 2 6  

C 5 1 0 7 5 7 0  
G A M 0 0 0 3 0  



COMPUTE 
ENP, ENY 

VP, VY 

1 

NO 

11 

v =  VP 
E N =  ENP 

t t I O  t t 

NO 
2 7  

I ­ - Q A Y 2  OAY E + D e 2  
e9 

t 1 I 

NOTE: 	TRM IS THE QUANTITY UNDER THE RADICAL I N  EQUATIONS 12 AND 13. 
VP IS THE VALUE OF EQUATION 13 WHEN THE POSITIVE VALUE IS USED. 
VM IS THE VALUE OF EQUATION 13 WHEN THE NEGATIVE VALUE IS USED. 

ENP IS THE VALUE OF EQUATION 12 WHEN THE POSITIVE VALUE IS USED. 
ENM IS THE VALUE OF EQUATION 12 WHEN THE NEGATIVE VALUE IS USED. 

COMPUTER PROGRAM FLOW CHART FOR ESTIMATING THE PARAMETERS OF A MIXED WEIBULL DISTRIBUTION 



Load Data 

Fi r s t ,  two tables are read  in starting in XI and FI 

DGI - A'yi 


DG2 - A72 


EGI - Terminal y i  


EG2 - Terminal 7 2  


BGAMI - Beginning y i  


BGAM2 - Beginning y2 


EN - Sample size. 2000 used for  this program 


ALP - a 0.8 used 


NVI - N u m b e r  of values in the tables 


k - A n  integer 1 - 4  


The computed pi should approach m i  


This can be accomplished by a ser ies  of runs varying Ayi, Ay2, y i ,  and 7 2  
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Legend 

m i - PMI el  - THI 


ml - PM2 192 - TH2 


m i  - PM3 


m i  - PM4 


mk- PM5 


P i  - B l  


P2 - B2 


P3 - B3 


$1 - PSI1 


$2 - PSI2 


$3 - PSI3 


/A; - U P 5  

N - EN Sample Size 

n - EN 	 Once the above N is used the ,acation EN is no longer needed. 
It is used to store n. 

v - v  
ENP - In equation (12), if the positive value of the radical is used. 

ENM - If the negative value is used. 

V P  - In equation (13),  if the positive value of the radical is used. 

VM - If the negative value is used. 

The following four combinations are possible, depending upon what number is 
read into location k .  

v n k Regardless of which combination is used, before the 

+ + Iprogram is continued, the value of equation ( 13) is 

+ - 2 stored in V and the value of equation (12) is stored 

- + 3 in EN. 

- - 4 
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